Greta Thunberg as a viral character in the tweets of the information sector during the COP25 climate summit

Main Article Content

Rafael Carrasco Polaino
Ernesto Villar Cirujano

Abstract













Introduction: The research aims to assess the media coverage of Greta Thunberg during the COP25 climate summit and her interactions with the media on Twitter, as well as how media entities leveraged her persona to enhance their social media impact. Methodology: Non-parametric statistical tests were used to classify tweets published by media outlets regarding mentions of Greta Thunberg, analyzing the engagement generated by tweets mentioning the Swedish activist versus those that did not. The effect of multimedia elements, URLs, or text-only on the messages' engagement was also examined. Results: Tweets mentioning @GretaThunberg generated higher engagement than those merely including her name. It was found that the activist did not interact with accounts mentioning her. Tweets with multimedia elements and URLs achieved higher engagement than text-only tweets. Discussion: The strategy of media outlets using Greta Thunberg's figure on Twitter and how specific content characteristics affect engagement are discussed. Conclusions: Directly mentioning @GretaThunberg and including multimedia elements and URLs in tweets are effective strategies for increasing engagement on Twitter, highlighting Thunberg's lack of direct interaction with the media.













Downloads

Download data is not yet available.

Article Details

How to Cite
Carrasco Polaino, R., & Villar Cirujano, E. (2021). Greta Thunberg as a viral character in the tweets of the information sector during the COP25 climate summit . Revista De Ciencias De La Comunicación E Información, 26, 1–13. https://doi.org/10.35742/rcci.2021.26.e116
Section
ICTs and social movements, media entities and new audio languages
Author Biographies

Rafael Carrasco Polaino, Complutense University of Madrid

Associate Professor in the Department of Journalism and New Media at the Complutense University of Madrid. He teaches subjects related to Information Technology, and, specifically, with digital media and its tools. He has training and experience in the field of design and communication at both a professional and academic level. In the field of research, his work focuses mainly on the study of social media through social networkanalysis (SNA) and statistics. He has applied these study methodologies in scientific research published in different impact journals. His research work focused on the aforementioned methodologies is developed after his research stay at the Media Innovation Lab of the University of Vienna.

Ernesto Villar Cirujano, Villanueva University

Associate Professor at the Villanueva University, of which he is the director of the Degree in Journalism. Doctor in Journalism (UCM) and Master’s Degree in Contemporary History from the Autonomous University of Madrid. Professor of Specialized Journalism, technology, and writing subjects. He is a member of several research projects and an author of scientific publications in impact journals on Journalism, social networks, and History. Author of the books Los espías de Suárez(Espasa, 2015) and Todos quieren matar a Carrero(Libros Libres, 2011). Active journalist.

References

Alonso-Muñoz, L., & Casero-Ripollés, A. (2018). Communication of European populist leaders on twitter: Agenda setting and the “more is less” effect. Profesional de la Información, 27(6), 1193–1202. https://doi.org/10.3145/epi.2018.nov.03

Blight, M. G., Ruppel, E. K., & Schoenbauer, K. V. (2017). Sense of Community on Twitter and Instagram: Exploring the Roles of Motives and Parasocial Relationships. Cyberpsychology, Behavior, and Social Networking, 20(5), 314–319. https://doi.org/10.1089/cyber.2016.0505

Carrasco-Polaino, R., Villar-Cirujano, E., & Martín-Cárdaba, M. Á. (2018). Artivismo y ONG: Relación entre imagen y «engagement» en Instagram. Comunicar, 26(57). https://doi.org/10.3916/C57-2018-03

Chou Jen, S., Masanao, O., Takeshi, S., Ken, N., Kanji, S., Junichiro, M., & Ichiro, S. (2020). Constructive Approach for Early Extraction of Viral Spreading Social Issues from Twitter. 12th ACM Conference on Web Science, 96-105. https://doi.org/10.1145/3394231.3397899

Coddington, M., & Holton, A. E. (2014). When the Gates Swing Open: Examining Network Gatekeeping in a Social Media Setting. Mass Communication and Society, 17(2), 236–257. https://doi.org/10.1080/15205436.2013.779717

Demszky, D., Garg, N., Voigt, R., Zou, J., Gentzkow, M., Shapiro, J., & Jurafsky, D. (2019). Analyzing Polarization in Social Media: Method and Application to Tweets on 21 Mass Shootings. NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, 1, 2970–3005. https://doi.org/10.3145/epi.2016.may.05

Estrada, A., Batanero, C., & Fortuny, J. M. (2004). Un estudio sobre conocimientos de estadística elemental de profesores en formación. Educación Matemática, 16(1), 89–111.

Guallar, J., Suau, J., Ruiz-Caballero, C., Sáez, A., & Masip, P. (2016). Redistribución de noticias y debate público en las redes sociales. El profesional de la información, 25(3), 358-366. https://doi.org/10.3145/epi.2016.may.05

Hassan, N. Y., Gomaa, W. H., Khoriba, G. A., & Haggag, M. H. (2018). Supervised Learning Approach for Twitter Credibility Detection. Proceedings - 2018 13th International Conference on Computer Engineering and Systems, (ICCES), 196–201. https://doi.org/10.1109/ICCES.2018.8639315

Herrera-Torres, J. C., Pérez-Tur, F., García-Fernández, J. & Fernández-Gavira, J. (2017). El uso de las redes sociales y el engagement de los clubes de la Liga Endesa ACB. Cuadernos de psicología del deporte, 17 (3), 175-182. https://revistas.um.es/cpd/article/view/313981

Hopke, J. E., & Hestres, L. E. (2018). Visualizing the Paris Climate Talks on Twitter: Media and Climate Stakeholder Visual Social Media During COP21. Social Media + Society, 4(3), 205630511878268. https://doi.org/10.1177/2056305118782687

Kim, J., & Hastak, M. (2018). Social network analysis: Characteristics of online social networks after a disaster. International Journal of Information Management, 38(1), 86–96. https://doi.org/10.1016/j.ijinfomgt.2017.08.003

MacFarland, T. W., & Yates, J. M. (2016). Mann–Whitney U Test. En T. W. MacFarland & J. M. Yates, Introduction to Nonparametric Statistics for the Biological Sciences Using R (pp. 103-132). Springer International Publishing. https://doi.org/10.1007/978-3-319-30634-6_4

Massey, F. J. (1951). The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association, 46(253), 68–78. https://doi.org/10.1080/01621459.1951.10500769

McQuail, D. (2016). Mass Communication. In The International Encyclopedia of Political Communication (pp. 1–12). Wiley. https://doi.org/10.1002/9781118541555.wbiepc155

Montells, L. (2016). Engagement en Twitter: qué es y para qué sirve. Metricool. https://bit.ly/2JW459A

Nielsen, R. K., & Schrøder, K. C. (2014). The Relative Importance of Social Media for Accessing, Finding, and Engaging with News. Digital Journalism, 2(4), 472–489. https://doi.org/10.1080/21670811.2013.872420

Noor, S., Guo, Y., Shah, S. H. H., Fournier-Viger, P., & Nawaz, M. S. (2020). Analysis of public reactions to the novel Coronavirus (COVID-19) outbreak on Twitter. Kybernetes, ahead-of-print(ahead-of-print). https://doi.org/10.1108/K-05-2020-0258

Ostertagová, E., Ostertag, O., & Kováč, J. (2014). Methodology and application of the Kruskal-Wallis test. Applied Mechanics and Materials, 611, 115–120. https://doi.org/10.4028/www.scientific.net/AMM.611.115

Piñuel-Raigada, J. L. (2002). Epistemología, metodología y técnicas del análisis de contenido. Estudios de sociolingüística, 3(1), 1-42. https://cutt.ly/PfsYoDAf

Royston, P. (1992). Approximating the Shapiro-Wilk W-test for non-normality. Statistics and Computing, 2(3), 117–119. https://doi.org/10.1007/BF01891203

Segerberg, A., & Bennett, W. L. (2011) Social Media and the Organization of Collective Action: Using Twitter to Explore the Ecologies of Two Climate Change Protests. The Communication Review, 14(3), 197-215, https://doi.org/10.1080/10714421.2011.597250

Singer, J. B. (2014). User-generated visibility: Secondary gatekeeping in a shared media space. New Media & Society, 16(1), 55–73. https://doi.org/10.1177/1461444813477833

Skogerbø, E., & Krumsvik, A. H. (2015). Newspapers, Facebook and Twitter. Journalism Practice, 9(3), 350–366. https://doi.org/10.1080/17512786.2014.950471

Smith, M., Ceni A., Milic-Frayling, N., Shneiderman, B., Mendes Rodrigues, E., Leskovec, J., & Dunne, C. (2010). NodeXL: a free and open network overview, discovery and exploration add-in for Excel 2007/2010/2013/2016, from the Social Media Research Foundation. https://goo.gl/m5xRJL

Tornos Inza, E. (2020). Tasa de interacción (engagement) en Twitter. Related: Marketing. https://bit.ly/2MIC46r

Tyagi, A., Babcock, M., & Carley, K. M. (n.d.). Climate Change Debate on Twitter During COP24.